15 • Chemical Kinetics

RATE LAWS

1. Consider the reaction: $2 \operatorname{NO}(g) + \operatorname{O}_2(g) \rightarrow 2 \operatorname{NO}_2(g)$

The following data were obtained from three experiments using the method of initial rates:

	Initial [NO]	Initial [O ₂]	Initial rate NO ₂
	mol L ⁻¹	mol L ⁻¹	mol L ⁻¹ s ⁻¹
Experiment 1	0.010	0.010	2.5 x 10 ⁻⁵
Experiment 2	0.020	0.010	1.0 x 10 ⁻⁴
Experiment 3	0.010	0.020	5.0 x 10 ⁻⁵

- a. Determine the order of the reaction for each reactant.
- b. Write the rate equation for the reaction.
- c. Calculate the rate constant.
- d. Calculate the rate (in mol $L^{-1}s^{-1}$) at the instant when [NO] = 0.015 mol L^{-1} and [O₂] = 0.0050 mol L^{-1}
- e. At the instant when NO is reacting at the rate $1.0 \times 10^{-4} \text{ mol } \text{L}^{-1}\text{s}^{-1}$, what is the rate at which O₂ is reactant and NO₂ is forming?
- 2. The reaction $2 \operatorname{NO}(g) + 2 \operatorname{H}_2(g) \rightarrow \operatorname{N}_2(g) + 2 \operatorname{H}_2\operatorname{O}(g)$ was studied at 904 °C, and the data in the table were collected.

	Initial [NO]	Initial [H ₂]	Initial rate N ₂
	mol L ⁻¹	mol L ⁻¹	mol $L^{-1}s^{-1}$
Experiment 1	0.420	0.122	0.136
Experiment 2	0.210	0.122	0.0339
Experiment 3	0.210	0.244	0.0678
Experiment 4	0.105	0.488	0.0339

- a. Determine the order of the reaction for each reactant.
- b. Write the rate equation for the reaction.
- c. Calculate the rate constant at 904 °C.
- d. Find the rate of appearance of N_2 at the instant when [NO] = 0.350 M and $[H_2] = 0.205$ M.
- 3. The reaction of ^tbutyl-bromide $(CH_3)_3CBr$ with water is represented by the equation:

$$(CH_3)_3CBr + H_2O \rightarrow (CH_3)_3COH + HBr$$

The following data were obtained from three experiments using the method of initial rates:

	Initial [(CH ₃) ₃ CBr]	Initial [H ₂ O]	Initial rate HBr
	mol L ⁻¹	mol L ⁻¹	mol L ⁻¹ min ⁻¹
Experiment 1	5.0 x 10 ⁻²	2.0 x 10 ⁻²	2.0 x 10 ⁻⁶
Experiment 2	5.0 x 10 ⁻²	4.0 x 10 ⁻²	2.0 x 10 ⁻⁶
Experiment 3	1.0 x 10 ⁻¹	4.0 x 10 ⁻²	4.0 x 10 ⁻⁶

- a. What is the order with respect to (CH₃)₃CBr?
- b. What is the order with respect to H_2O ?
- c. What is the overall order of the reaction?
- d. Write the rate equation.
- e. Calculate the rate constant, k, for the reaction.

4. The reaction:

$$2 \operatorname{NO}_2(g) + \operatorname{O}_3(g) \rightarrow \operatorname{N}_2\operatorname{O}_5(s) + \operatorname{O}_2(g)$$

Rate Law: Rate = k [NO₂]^a [O₃]^b

Write <u>your</u> values for "a" (0, 1, 2), "b" (0, 1, 2), and "k"

The following data were obtained from three experiments using the method of initial rates:

	Initial [NO ₂]	Initial [O ₃]	Initial rate N_2O_5
	mol L ⁻¹	mol L ⁻¹	mol L ⁻¹ min ⁻¹
Experiment 1	0.100	0.200	
Experiment 2	0.100	0.100	
Experiment 3	0.200	0.400	

- a. What is the order with respect to NO_2 ?
- b. What is the order with respect to O_3 ?
- c. Write the rate equation.
- d. Calculate the rate constant, k, for the reaction.
- 5. Rate data were obtained for following reaction:

A + 2B ---> C + 2D

	Initial [A]	Initial [B]	Initial rate C
	mol L ⁻¹	mol L ⁻¹	mol L ⁻¹ s ⁻¹
Experiment 1	0.10	0.10	3.0 x 10 ⁻⁴
Experiment 2	0.30	0.30	9.0 x 10 ⁻⁴
Experiment 3	0.10	0.30	3.0 x 10 ⁻⁴
Experiment 4	0.20	0.40	6.0 x 10 ⁻⁴

- a. What is the rate law expression for this reaction?
- b. What is the value of k?
- c. What would be the Rate of formation if the value of A was 0.50 and B was 0.40?